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Consideration is given to an approach qualitatively illustrating a formal substantiation of the analogies be-
tween Eulerian hydrodynamic systems and finite-dimensional mechanical systems of the oscillator type.

The equation (1) considered in [1]

ϕ
..

 + 2β (1 + αϕ
. 2) ϕ

.
 + ω0 [1 + ξ1 (t) + a cos ωt] sin ϕ = ξ2 (t)

of the oscillations ϕ(t) of a pendulum with random perturbations of the suspension axis ξ1(t) and ξ2(t) is qualified by
the authors as an "analogy" not related to or at least not following from the hydrodynamic equations that describe tur-
bulent jet flow. However, without focusing attention on a specific form of the equation we can demonstrate a possible
source of origin of its structure. Indeed, it is well known that the Eulerian infinite-dimensional representation of hy-
drodynamic equations in certain procedures can be reduced to a set of finite-dimensional representations. Such proce-
dures, for example, are passage to a Lagrangian description, Galerkin-type spectral expansions, discrete-vortex
modeling, etc. The characteristics of flow in such approaches are described, as a rule, by the systems of ordinary dif-
ferential equations for finite-dimensional modes of these representations.

To make the representation more lucid let us consider, for example, two-dimensional flow with an Eulerian
velocity field u(x, y, t), v(x, y, t) described by the Euler or Navier–Stokes equations. The Lagrangian description of
such a flow has the form

X
.
 = u (X, Y, t) ,   Y

.
 = v (X, Y, t) , (1)

the points denote differentiation with respect to t.
We consider the perturbed problem X = X0 + X1 + ... and Y = Y0 + Y1 + ..., where X1(t) and Y1(t) are the small

perturbations of the Lagrangian trajectory. Then system (1) disintegrates into a chain with two first systems

X
.

0 = u (X0, Y0, t) B u
0
 ,   Y

.
0 = v (X0, Y0, t) B v

0
 ;

X
.

1 = a11X1 + a12Y1 ,   Y
.

1 = a21X1 + a22Y1 ,
(2)

where

a11 = ux (X0, Y0, t) B ux
0
 ;   a12 = uy

0
 ;   a21 = vx

0
 ;   a22 = vy

0
 B − a11 .

The elimination of Y1 from (2) results in the equation

X
..

1 − δX
.

1 − σX1 = 0 ; (3)

here
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δ = 
d
dt

 (ln a12) ;   σ = a
..

11 + a11 (a11 − δ) + a12a21 .

Depending on the coefficients δ and σ, the equation (3) obtained can describe a certain oscillator. We note
that the presence of arbitrary (determined or random) external perturbations in system (1) is not fundamental and it
does not change the structure of (3). It is obvious, however, that the character of the dynamic system (2) is determined
by the coefficients aij, which are the characteristics of the basic hydrodynamic field. Thus, analyzing the hydrodynamic
field, one can evaluate the extent to which (3) characterizes oscillatory (stable or unstable) modes.

In the case where the basic field describes rotations or oscillations of the flow such an extent turns out to be
large. An example is provided by the asymptotically exact solution for the dynamics of two initially point vortices in
an incompressible viscous fluid [2] when the equation of perturbed motion for X1(t) turns out to be a Mathieu equa-
tion (oscillations of a pendulum with a harmonically changing suspension length) (σ = a + 2q cos 2τ) having unstable
oscillatory modes:

X
..

1 + (a + 2q cos 2τ) X1 = 0 , (4)

where τ = 4Γt ⁄ πνl2, and l, a, and q are defined functions slowly changing on the period cos 2τ; the points above
X1 in (4) correspond to differentiation with respect to τ.

The structure of (3)–(4) coincides with that of (1) from [1], which, in all probability, should not be inter-
preted as an accident since the physical scope of this analogy is quite clear — the important role of pairwise coales-
cence of large vortices in shear flow, which is assumed to be one governing factor of turbulent mixing in shear flows
[3].

The situation with the coefficient δ is not so clear. The fact is that in examples with pronounced vortex struc-
tures, where a12 D t−1 exp (−ct−1), the coefficient δ cannot have an oscillatory character 

δ D 
d
dt

 (ln a12) D − t
−1

 + ct
−2

and its role disappears for sufficiently long times.
Thus, the reasoning presented above and being only of a qualitative illustrative character nonetheless demon-

strates certain formal and physical foundations making consideration of such heuristic models quite a rational approach.

NOTATION

x, y, Eulerian coordinates; X(t), Y(t), Lagrangian coordinates of a liquid particle; t, time; u and v, Eulerian ve-
locities; aij(t), gradients of the basic velocity field, ij = 1 and 2; Γ, intensity (circulation) of the vortex; ν, coefficient
of kinematic viscosity of the liquid; l, distance between the vortices; ϕ, angular deviation of the pendulum relative to
the equilibrium position; a and ω, amplitude and frequency of harmonic vertical oscillations of the axis of the pendu-
lum’s suspension.
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